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We propose that an appropriate prototype for modeling self-organized criticality in dissipative systems is a
generalized version of the two-variable cellular automata model introduced by Hergarten and Neugebauer
fPhys. Rev. E61, 2382 s2000dg. We show that the model predicts exponents for the event size distribution
which are consistent with physically observed results for dissipative phenomena such as earthquakes. In
addition we provide evidence that the model is critical based on both scaling analyses and direct observation
of the distribution and behavior of the two variables in the interior of the lattice. We further argue that for
reasonably large lattices the results are universal for all dissipative choices of the model parameters.
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I. INTRODUCTION

For more than a decade the application of self-organizing
cellular automata models to the study of earthquake and
landslide dynamics has generated considerable controversy.
The concept of self-organized criticalitysSOCd was first in-
troduced by Bak, Tang, and WiesenfeldsBTWd f1,2g in the
context of a simple sandpile model which is driven by the
random addition of sand grains and relaxes via a sequence of
avalanches. The model evolves to a critical state where char-
acteristic scales are lost and the avalanche distribution dis-
plays power law behavior. In the BTW model the number of
grains of sand is conserved except at the boundaries of the
system, and it has been shown that this conservation law is
crucial for criticality in the modelf3g.

In contrast phenomena such as earthquakes and landslides
which experimentally display scale-invariant event distribu-
tions over many decades are dissipative. In both of these
cases the probability density for events of “energy”E is of
the form PsEd,E−t where the exponent is in the ranget
<1.8–2.1. Unsurprisingly these exponents are not recovered
by the conservative BTW model. As a result a variety of
dissipative models have been introduced in order to better
capture the underlying behavior, with the most successful
being the Olami-Feder-ChristensensOFCd earthquake model
f4g. In the OFC model each nodesi , jd on a square lattice is
associated with a continuous-state variable or energyuij . Ini-
tially the energies are assigned random values in the interval
f0, 1d. The system is then slowly driven in such a way that
the energy at all the sites increases uniformly until one of the
sites reaches the thresholduij =1 and is termed supercritical.
When this happens an avalanche occurs at a time scale much
quicker than the driving speed. The supercritical site relaxes,
with its energy being distributed to four neighbors,uneigh,
according to

uneigh→ uneigh+ auij , uij → 0. s1.1d

If any of the neighboring sites become supercriticalsi.e.,
uneighù1d as a result of this process, they also topple accord-
ing to the same rules. The avalanche continues until all node
values are below the threshold, at which stage the driving

process proceeds until the next event is triggered. The pa-
rametera measures the level of dissipation in the toppling
process. Ifa=0.25, the energy is conserved, while fora
,0.25 the system is clearly nonconservative. The question
of whether the OFC model is truly critical in this case has
attracted a great deal of attention in recent years. In the
random-neighborsRNd version of the model it has been ana-
lytically established that the system is never critical in the
nonconservative regimef5,6g. In the nearest-neighborsNNd
version there is an increasing body of numerical evidence
again suggesting that the model is only critical in the conser-
vative limit f7–12g. Furthermore, for values ofa at or close
to the conservative limit one finds a density function expo-
nent significantly smaller than that observed in nature, with
t<1.2 for a=0.25 andt<1.6 for a=0.24. For smaller val-
ues ofa there is clear numerical evidence that the model is
not critical f9,11g; however, one can fit an exponent in the
range tP f1.8,2.1g across several decades of event sizes,
providing encouragement that the nonconservative OFC
model captures some important features of real dissipative
systemsf12,13g.

In this paper we extend a two-variable lattice cellular au-
tomaton model recently introduced by Hergarten and Neuge-
bauersHNd f14g. In Sec. II we define the model and, via a
preliminary investigation of event size distributions, argue
that the model may well be both critical and have a density
function exponent that is in agreement with physically ob-
served distributions. Via analysis and simulation we study
the random-neighbor version of the two-variable model in
Sec. III, and on the basis of this study we conclusively dem-
onstrate that the random-neighbor model is only critical in
the limit when the variables are conserved. In contrast, in
Sec. IV we analyze the nearest-neighbor version of the
model and show that an extensive inner region of the system
is critical for all choices of conservation level. Our main
results and conclusions are summarized in Sec. V.

II. DEFINITIONS AND PRELIMINARY RESULTS

The motivation behind the OFC model is to identify the
key elements that lead to the apparent ubiquity of SOC in
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nature. In this sense one wants to find the simplest “toy”
model which captures this behavior. However, as discussed
above the OFC model is not sufficient in this respect and
hence we look for an alternate model which is both critical
and dissipative. A promising candidate has recently been
proposed by Hergarten and Neugebauerf14,15g, initially in
the context of modeling landslides. In the BTW and OFC
models an avalanche begins when the variable in the model
reaches a threshold value, which can essentially be under-
stood as being when the local slope or gradient of the surface
is sufficiently large. To allow for other elements in their
model HN have incorporated two variablesuij andwij asso-
ciated with each site in the lattice. Here we propose a gen-
eralization of the HN two-variable model and provide evi-
dence that, unlike the OFC model, it is genuinely critical.

The original HN model is physically motivated by appeal-
ing to the ideas of toppling in avalanches or landslides for
which one imagines many factors or variables might be rel-
evant f15g. Avalanches are more likely to start where the
local height differences are large; hence, the dominant factor
is probably related to geometry. Physically the corresponding
toppling process is approximately conservative associated
with the movement of particles from one site to its neigh-
bors. In addition there are nongeometric factors which also
play a role in determining when and where an avalanche
starts. For example, it is known that regardless of surface
geometry the chance of a landslide increases over time due to
a slow weakening of the failure plane, such features change
nonconservatively during a landslide. In our model based on
a square lattice we assume the conserved variablesslocal
slopes or massd are represented byuij , while the noncon-
served elements are contained inwij . The two variables are
initially distributed with random values drawn from a uni-
form distribution between 0 and 1. The product of the two
variables determines the likelihood of an avalanche starting
at a particular site and is used to measure the local “energy”
or stress. If the energyuijwij ,1 at all sites, the system is
stable and we assume that both variables are slowly, but
uniformly, driven across the entire latticesfor simplicity we
assume the variables are driven at the same rate; however,
the results that follow are recovered for any choice of driving
ratesd. This continues until at some site the energy, which
increases nonlinearly in this model, reaches the threshold
uijwij =1 at which point an avalanche is initiated. The super-
critical site relaxes according to

uneigh→ uneigh+ 1
4uij , uij → 0, wij → ewij . s2.1d

For the nearest-neighbor version of the model the adjacent
sites on the lattice are the appropriate neighbors. Later we
also consider a random-neighbor two variable model in
which for each toppling site theuneigh are selected at random
from the lattice. The variablew is not redistributed during
the topple, and the parametere, which is assumed to be in
the range 0øeø1, measures the level of dissipation. Ife
=1, both u and w are conserved during the topple; con-
versely, if e,1, the toppling rule is dissipative in the vari-
able w. As in the OFC model, if any neighboring sites be-
come supercriticalsi.e., u..w..ù1d, the avalanche continues
using the same toppling rule until a stable state is reached.

Open boundary conditions are employed at the edges of the
lattice providing the only form of dissipation in thee=1
limit.

The HN model discussed above is recovered by choosing
e=0 f14g; in this limit, no site can ever topple more than
once during a single avalanche. Hergarten and Neugebauer
found that the nearest-neighbor version of their model pro-
duced an event size distribution with slope exponent of ap-
proximately 2 consistent with observations. For the general-
ized model we also start by considering the more physically
relevant nearest-neighbor model. We have analyzed the prob-
ability distributionPLss;ed of events of sizes in a system of
linear sizeL si.e., a lattice of sizeL3Ld for fixed e. For all
values ofe simulated log-log plots ofPLss;ed versuss reveal
approximately straight lines, suggesting possible SOC. Fur-
thermore, the corresponding slope exponents satisfyt
=1.90±0.10 for alleø0.9. The precise behavior for 0.9
,e,1 is difficult to elucidate from simulations due to in-
creasing finite-size effects coupled with increased average
avalanche sizes yielding a large transient period in the sys-
tem ssee also Sec. IVd. As a result we can only crudely ap-
proximate the asymptotic slope exponent resulting int
=1.90±0.20 in this range. Thus for alle,1 we predict a
slope exponent fully consistent with observations in nature.

Comparing results for different lattice sizes suggests that
finite-size effects are important and are particularly notice-
able for larger choices ofe. These effects lead to a deviation
from linearity in log-log plots ofPLss;ed for small L. This
behavior can be further investigated by using a finite-size
scaling sFSSd hypothesis to try and collapse the data for
fixed e. The FSS ansatz states that

PLss;ed , L−bFess/LDd, s2.2d

whereFe is an appropriate scaling function andb andD are
exponents that describe the scaling of the distribution func-
tion. The slope exponent is related to these exponents ac-
cording to t=b /D. FSS plots fore=0, 0.2, and 0.8 are
shown in Fig. 1sad usingb=3.84 andD=2 corresponding to
t=1.92 sin this figure the data have been binned for im-
proved resolutiond.

In general there is excellent data collapse for the larger
system sizes considered, with deviations for smallL. To
more carefully examine the behavior of the tails of the prob-
ability distributions it is instructive to plotstPLss;ed versus
s/LD which is similar to multiscaling the dataf12,13,16g.
Our results are shown in Fig. 1sbd. For the two smaller
choices ofe the data collapse is still good even on this ex-
aggerated scale. Fore=0.8 the finite-size effects are much
stronger, suggesting that if FSS is appropriate, it will only
collapse the data for systems somewhat larger thanL=600.

A further interesting feature of the data is strong evidence
of universality for all dissipative choices ofe. In particular,
for fixed L one finds that the distributionsPLss;ed overlay
one another for a range ofe values sexcluding the cutoff
region wheres,L2d. More specifically for a particular
choice of the dissipation parameter—e=e0,1, say—one can
find a crossover system sizeLese0d such that forLùLese0d
there is a universal distributionPLss;ed for 0øeøe0. Due to
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the finite-size effects discussed above, one finds that the
crossover valueLese0d increases ase0 increases, with, for
example,Les0.2d<300 andLes0.4d<600. As a result we be-
lieve the original HN modelswheree=0d should capture all
of the important features of the dissipative systems, while
being the most efficient to study via simulation. In the con-
servative limit one recovers thea=0.25 OFC result with a
slope exponentt<1.2. Thus it appears the conservative
choicee=1 is in some sense a singular limit of the model.
For arbitrarily large systems one would observe universal
behavior for all dissipative choices ofe with distinct behav-
ior in the conservative limit.

In summary, on the basis of preliminary studies we have
shown that there is good evidence of power-law type behav-
ior for all choices of the conservation parametere. The re-
sulting slope exponent is consistent with observed phenom-
ena in the nonconservative cases, and there is some evidence
of finite-size scaling consistent with criticality. In the next
two sections we examine the random- and nearest-neighbor
models in more detail to further clarify their behavior.

III. RANDOM-NEIGHBOR TWO-VARIABLE MODEL

In this section we study the random-neighbor version of
the two-variable model, which can be viewed as a mean-field
approximation to the nearest-neighbor model. This allows us
to determine the importance of spatial correlations for the
model and has the benefit of being easier to analyze.

As mentioned above we know one of the features that a
model must exhibit to be considered as having SOC charac-
teristics is a power law in the probability distribution func-
tion. Hence we start by analyzing log-log plots of the prob-
ability distributions of avalanche sizes for variouse values

and system sizes. For smalle there is no clear region of
power-law-type behavior, but ase is increased there is more
evidence for a straight line fit. Finally ase→1 there is a
definite power law with slope exponentt→1.5, identical to
the exponent found for the conservative RN OFC model
f17g. In Fig. 2 the probability distributions fore=0 and e
=0.8 are shown for a range of system sizesL=300, 600, and
1200. The results fore=0 are shifted for clarity and in all
cases the data have been binned in order to see the overlay of
the different system sizes. From the results shown in Fig. 2
we see that a power law could not be fitted to the results for
e=0 but whene=0.8 there is a region where a straight line
could be fitted before the exponential tail, suggesting that for
smalle the model is not critical. Furthermore, the plot shows
that for a fixede and variousL, the probability distributions
overlay one another. Hence the model lacks scale invariance
since the largest event size is not growing withL, and there-
fore could not be classed as displaying SOC behavior. Simi-
lar results are found for all choices ofe,1 studied.

To understand the model better we investigate the distri-
butions of the energy variablesu andv. For all e,1 we find
that the distribution for the variablev covers only a small
range with all values closely bunched. Looking at Fig. 3
where we have plotted the distribution of theu variable for a
selection ofe values, it is clear that ase is increased towards
1 the distributions become more peaked with the locations of
the peaks moving to the right. Whene=1 the peaks are at
u/um<0, 0.31, 0.62, and 0.93 whereum is the maximumu
value measured across the system. Comparing this result
with the RN OFC model whena=0.25, shown as the lowest
curve in Fig. 3, reveals that the distributions are very similar.
This suggests that any theoretical results developed for the
conservative RN OFC model may also fit the conservative
RN two-variable model, indeed we believe that our model
essentially reduces to the conservative OFC model in the
limit e→1 salbeit with different threshold values at each
sited. Thus we believe the model is critical in this limit.

Further evidence that the random-neighbor model is only
critical in the e=1 limit can be found by examining the

FIG. 1. Scaling plots ofPLss;ed for the two-variable model with
e=0, 0.2, and 0.8. Exponentsb=3.84 andD=2 have been used
corresponding to a slope exponent oft=1.92. Standard finite-size
scaling has been used insad where for clarity thee=0.2 and 0.8
curves have been shifted right by two and four decades, respec-
tively. In panesbd the modified finite-size scaling plots discussed in
the main text are shown. In this case thee=0.2 and 0.8 curves have
been shifted right by four and eight decades respectively.

FIG. 2. Probability distributions of avalanche sizes in the
random-neighbor two-variable model fore=0 slower curved ande
=0.8 supper curved. For clarity the lower curve has been shifted
down one decade.
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branching rates. Hence we numerically simulate the model
to calculates for variouse and system sizesL. The branch-
ing rate is defined as the average number of supercritical
descendants generated when each supercritical ancestor
topplesf17g. In the simulations we calculates in two slightly
different ways. First we allow each toppling site to topple to
either two, three, or four neighbors with the appropriate
probabilities for modeling a system having a boundary
sedges and cornersd; this is necessary to provide dissipation
in the conservative limite=1.1 From these results we linearly
extrapolate to estimates for an infinite-size system. In the
second method we assume that each site has precisely four
neighbors, naively modeling an infinitely large system. In
Table I we provide our results for the two different methods.

For smalle the extrapolated results from the first method
and the results for the second method are in excellent agree-
ment. Ase increasesse.0.9d there is a slight discrepancy;
we believe that larger systems are required in order to be
able to more accurately extrapolate because the average ava-
lanche size is becoming large, leading to noticeable finite-
size effects. The results confirm that the model is only criti-
cal in the conservative case.

IV. NEAREST-NEIGHBOR TWO-VARIABLE MODEL

For the remainder of this paper we concentrate on the
nearest-neighbor two-variable model for which we found en-

couraging preliminary results in Sec. II. Our study is based
on extensive simulations of the model for a variety of system
sizesL and conservation parameter levelse. In order to en-
able large scale simulations we have employed a linked-list
data structure similar to that introduced by Grassberger for
the OFC modelf7g. The only significant difference compared
to the OFC model is that, due to the nonlinear form of the
update rule for the two variable model, it is not those sites
with uw closest to the thresholdsi.e., the smallest 1−uwd but
rather those with the smallestf−su+wd+Îsu−wd2+4g /2
which will seed the next avalanche. Using this algorithm
reduces CPU time by typically three orders of magnitude
compared with a naive implementation of the model rules.

In our simulations random initial data in the rangef0,1d is
chosen for bothu andw, and the model is run according to
the rules given in Sec. II. One expects a transient period
during which the system organizes towards a stationary state;
it is important to wait until after this transient phase before
collecting data. We find that the usual indicator of transient
behavior, the average avalanche size, rapidly converges but
that the distributions of theu and w variables continue to
organize over a much longer period. Thus we believe that
monitoring the maximumu value across the lattice gives the
best guide to when the transient phase is passed, with this
value approaching a constant levelumaxsL ,ed for each choice
of L and e. We further find that for a given choice ofe the
approach to the maximumu value follows a simple scaling
pattern for most choices ofL. In particular, ifu+sns;L ,ed is
the maximum value ofu after ns avalanches, then we find
data collapse by plottingu+sns;L ,ed /L versusns/L

gsed for an
appropriate choice of exponentgsed. Consequently the num-
ber of avalanches that need to be simulated to reach the
stationary state grows likeLg. For example the results for
e=0 with g=3.74 are shown in Fig. 4.

The only exception to this scaling found occurs for suffi-
ciently small systemsL,L, say, whereL, increases from
L,<50 for e=0 to L,<600 for e=0.95. Fore,0.9 the
exponentg varies slowly withgsed<3.74+e /10, while g
grows more rapidly ase→1. We further find that the limiting
valueumaxsL ,ed satisfies

umaxsL,ed/L = lim
ns→`

u+sns;L,ed/L < 0.554Î1 − e s4.1d

for all e. The maximumu value vanishes ase→1 as is to be
expected since in this limit thew values at all sites grow
during the driving phase and remain fixed during the top-
pling phase of the avalanche. Thus one must find that the
correspondingu values in the stable state decrease towards
zero as the number of avalanches increases.

A. Distributions of u and w

The log-log plots of the probability distributionsPLss;ed
shown in Sec. II give encouragement that the nearest-
neighbor two-variable model may genuinely display self-
organized criticality. Further evidence for criticality can be
found from explicit examination of the distributions of the
variablesu andw in the interior of the lattice. To begin we
examinePusud, the probability distribution for theu variable.

1In particular we assign two neighbors with probability 4/L2 and
three neighbors with probability 4sL−2d /L2 reflecting the number
of corner and edge sites, respectively, on a squareL3L lattice. In
all other cases four neighbors are assigned.

FIG. 3. Probability distributions of energy valuesu/um from
simulations withL=600. From top to bottom the curves correspond
to e=0, 0.4, 0.8, 0.9, 0.95, and 1. The bottom curve corresponds to
the RN OFC model whena=0.25.
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We have seen above that for each choice ofL ande there is
a maximum valueumaxsL ,ed that the variableu takes. In Fig.
5 we plot the sappropriately normalizedd distribution Pu
againstu/umaxsL ,ed for L=600 and a range ofe values.

We note that the distributions overlay one another regard-
less of the choice ofe; an equally convincing overlay is
found if we also vary the system size. We further observe
that the distribution has significant peaks atu/umax=0,1

4 , 1
2,

and 3
4. These become more emphatic if we look at the distri-

bution ofu values over an interior sublattice of sizeN3N at
the center of the full system. The results for a range ofN are
shown in Fig. 6.

From this we can see that the system organizes in such a
way that near the center of the lattice all sites take au value
which is approximately an integer multiple ofumax/4. This is
clearly demonstrated in Fig. 7 which shows a snapshot of the
u values in the middle 60360 portion of theL=1200, e
=0.2 system.

We discuss these findings further at the end of this sub-
section once we have established the corresponding distribu-
tion of thew variable.

We saw in Fig. 5 that thePusud distribution was essen-
tially the same for any choice ofL ande. Connected to this
is the observation that the distribution is stationary in the

sense that if we take a snapshot from any stable distribution
we find the same results. The situation is more complicated
for the correspondingw distribution Pwswd. In this case we
find that the overall shape remains approximately the same
from one snapshot to another but the distribution does dis-
play significant movement. Concentrating on the interior of
the system we observe that almost all sites take one of a
handful of w values. The locations of the peaks move for
later snapshots becausew is increased during the driving
phase between avalanchesfwe explain why this driving is
significant for Pwswd but not Pusud belowg. For eache we
find peaks in the distribution only in the rangeeøw/wm
ø1 wherewm is the maximum value ofw observed in the
box over a large number of stable distributions. Watching
movies of the distributions develop over time reveals that
peaks move to the right until they reachw=wm when the
corresponding sites topple and so the peak is reassigned to
w=ewm. This suggests that all sites in the box with a match-
ing w value topple as part of a single avalanche. In Fig. 8 we
show a snapshot of thew values in the middle 3003300
portion of theL=1200,e=0.2 system.

This shows that large connected patches of the system
take the samew value. Within patches there are sometimes
smaller patches of sites which all take another singlew
value. Each patch corresponds to a peak inPwswd with a

TABLE I. Branching rates for the RN two-variable model calculated from simulations for a range ofe
andL values. Columns 2–5 show results and extrapolationssL→`d when two, three, or four neighbors are
chosen at randomssee main textd. Columns 6 and 7 show the corresponding results when four neighbors are
always chosen.

Two, three, or four random neighbors Four random neighbors

e L=300 L=600 L=1200 L→` L=300 L=600

0.0 0.51591 0.51691 0.51731 0.51793 0.51781 0.51781
0.2 0.57331 0.57431 0.57491 0.57543 0.57541 0.57541
0.4 0.64431 0.64551 0.64611 0.64673 0.64661 0.64661
0.6 0.73361 0.73491 0.73561 0.73643 0.73621 0.73621
0.8 0.85161 0.85321 0.85391 0.85473 0.85471 0.85471
0.95 0.97781 0.97921 0.97981 0.98066 0.98011 0.98012
1.00 0.999752 0.999952 1.00003

FIG. 4. Scaling plot of the growth of the maximumu value
across the latticesu+d as the number of avalanchessnsd grows. The
results shown are for the casee=0 and a variety of lattice sizes as
indicated.

FIG. 5. The scaled probability distribution of theu variable
across the lattice withL=600 and a range ofe values as indicated.
The dotted line shows the complete set of data for thee=0 case.
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height proportional to the size of the patch. The results de-
scribed above indicate that when one site in a patch topples,
nearly all other sites in the patch topple in the same ava-
lanche.

Combining our results forPusud andPwswd near the cen-
ter of the lattice leads to a simple picture for the dynamics of
the two-variable model. If we consider a box of sizeN3N at
the center of the lattice, one finds patches of fixedw values
of scales up to the box size andu values approximately at
integer multiples ofumax/4. The system is driven untiluw
=1 at some site when an avalanche starts. According to Eq.
s4.1d umax is large for largeL and hence there is no noticeable
change inPusud during the driving phase whereas there is a
visible change inPwswd because the maximumw value in a
box near the center of the lattice,wm, is small with wm
<1/umax. Within the patch of the seed site all sites topple in
the avalanche in an analogous manner to a large avalanche in
the BTW sandpile model. It is possible that neighboring
patches also topple within the avalanche if there had previ-
ously been no site withu<umax even thoughwumaxù1 for
the w value in that patch. Since allw values in a patch are
reassigned in the same avalanche, they remain as a single

patch after the avalanche has occurred. We show below that
a simple periodically repeating pattern of avalanches is pre-
vented, however, by the outer layers which do not fit with
this scheme.

B. Quantitative formalism for criticality

The large patches of constantw values near the center of
our lattices observed in Sec. IV A are somewhat reminiscent
of the distributions of spins in an Ising or multistate Potts
model at the critical temperature. In this subsection we aim
to capitalize on this similarity in order to develop another
formalism for identifying criticality. We require several fea-
tures for critical behavior: First, the dimension of the largest
patch of fixedw swhich we may identify as a “correlation
length”d should diverge in the infinite size limit. Second, we
need to confirm that when an avalanche starts in a patch, all
sites in that patch topple in the same avalanchesin the limit
of L→`d. Finally, we require patches on all scales up to the
lattice size. We examine these requirements below leading to
an improved understanding of the system dynamics and fur-
ther evidence that the model is genuinely critical.

Initially we devise a quantity to measure the likelihood
that all sites within a particularw patch topple in the same
avalanche. We know that the distribution of variables is more
organized near the center of the lattice, so we choose a mea-
sure which can be defined layer by layerswhere layer 1
contains all sites on the boundary of the lattice and layerL /2
contains the innermost four sitesd. At the start of each ava-
lanche we measure thew value of the seed site,ws. Then for
each layeri we count the number of sites withw=ws which
receive a contribution from a toppling neighbor during the
avalanche—ni

rec, say sa site is only counted once in any
single avalanched. We further countni

top, the number of sites
in layer i that topple and hadw=ws, specifically excluding
the seed site. We repeat this process over many avalanches
and define thelayer patch branching ratevia

ps
sid = o ni

top/o ni
rec, s4.2d

where the sums are taken over all avalanches. Our results for
the most dissipative choicee=0 and a range of system sizes
are shown in Fig. 9.

FIG. 6. The probability distribution of theu variable across
interior N3N lattices with sfrom top to bottomd N=4L /5, 3L /5,
2L /5, L /5, andL /10.

FIG. 7. A snapshot of theu values in the center 60360 box for
the case of anL=1200,e=0.2 system. Herei and j represent the
coordinates of the sites in the lattice. All sites in this sublattice take
a value ofu/umax=0, 0.25, 0.50, 0.75±0.0023 and are shaded as
shown in the color bar. In this snapshot there is no site withu
<umax.

FIG. 8. A snapshot of thew values in the center 3003300 box
for the case of anL=1200,e=0.2 system. The valuessbetween 0
andwmd are shaded as shown in the color bar, andi and j represent
the coordinates of the sites in the lattice.
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For an extensive region in the center of the lattice we find
thatps

sid approaches 1 as the system size increases, supporting
the conjecture that all sites in a givenw patch topple in the
same avalanche. Plottingps

sid against 1/i more clearly dem-
onstrates the approach to 1 for layers sufficiently far from the
boundary, as shown in the inset of Fig. 9.

We further need to establish that the size ofw patches
grows withL in order to claim criticality. A simple measure
of this is to determine the average size of the largest patch,
which we find does grow proportionally withL. It is also
useful to develop a layer quantity which can be coupled with
ps

sid. For each layer we calculate the average largest unbroken
sequence of sites with the samew value, divided by the

number of sites in the layer. The resulting indicator—d̄sid,
say—approaches 1 if all sites in the layer are always part of
a single patch and tends to 1/f4sL−2i +1dg if the w values in
the layer are randomly distributed. Concentrating one=0

and a range ofL values reveals thatd̄sid→0 in the outer few
layers sfor 0, i &L /20d but converges to a finite nonzero
value for all other layers. Combining the results forps

sid and

d̄sid suggests that the two-variable model is critical. With the
exception of the outermost layers the size ofw patches grows
with L and within patches the sites generally all topple to-
gether. This results in a very inhomogeneous system, with
the largest events typically occurring near the center of the
lattice. The distribution of patch sizes over a large number of
avalanches essentially corresponds to the avalanche prob-
ability distributionPLss;ed discussed in Sec. II.

From the description above one is led to question whether
the two-variable model leads to periodic behavior near the
center of the lattice. Such behavior would raise doubts over
the criticality of the model and more importantly greatly
limit its applicability to natural phenomena. Simulations sug-
gest that the disorder caused by the outer layers prevents a
simple periodically repeating sequence of avalanches. More
specifically the spatial inhomogeneity caused by the open
boundary conditions stops a periodic state developing; thus,
one finds large patches break into smaller ones while distinct

patches may also merge into one.2 To demonstrate this we
have examined the event size distributionsPL

fi,jgss;ed which
only count events that include the specific sitesi , jd. In Fig.
10sad we show the results for six sites spread across the
lattice for the casee=0, L=1200.

In all cases we find approximate power-law behavior with
no peaks characteristic of periodicitysnote that because only
events involving a specific site are included much less data
are available leading to noisier plotsd. The maximum event
size cutoff is larger for sites nearer the center of the lattice, as
anticipated from the event size inhomogeneity described ear-
lier. We have also recorded the difference in sizesDsd of
successive events involving sitesi , jd, collecting the results
into another distribution functionDL

fi,jgsDs;ed. If the size and
location of events typically change slowly over time, we
would expectDL

fi,jgsDs;ed to be localized aroundDs<0;
however, as shown in Fig. 10sbd the distribution is again
approximately power law over several decades. These results
are all consistent with the idea that the model is genuinely
critical and a reasonable prototype for understanding the el-
ements underlying physical phenomena such as earthquakes.
One does sometimes find sequences of large avalanches for
successive events including a specific site, which is unphysi-
cal. However, one must accept that simplifications in the
model, such as having the same driving rates ande values for
every site, are also unphysical. The two-variable model is
robust to variations ine and the system driving rate which
provides encouragement that further, more realistic, modifi-
cations will still result in a critical system with appropriate
exponents.

Finally in this section it is interesting to note that one can
repeat the analysis discussed above for more general defini-
tions of a two-variable model; for example, one could re-
place the toppling rule foru in Eq. s2.1d by

2In contrast, when periodic boundary conditions are employed the
two-variable model enters a stable periodic state attributable to syn-
chronization.

FIG. 9. The layer patch branching rateps
sid plotted against

i / sL /2d for e=0 and a variety of system sizes. The inset shows the
same data plotted against 1/i for layers near the center of the lattice.

FIG. 10. The distributionssad PL
fi,jgss;ed and sbd DL

fi,jgsDs;ed
described in the text fore=0, L=1200, and a range of lattice coor-
dinatessi , jd. From top to bottom the curves representi = j =100
sshifted upwards by ten decadesd, i = j =200 sshifted upwards by
eight decadesd, …, i = j =500sshifted upwards by two decadesd, and
i = j =600.
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uneigh→ uneigh+ auij , s4.3d

where 0,aø0.25. Preliminary studies fora,0.25 suggest
that the system still organizes in such a way that large
patches of constantw values are formed near the center of

the latticesso thatd̄slayer id.0 throughout the interior of the
system as aboved. However, one findsps

slayer id does not ap-
proach 1 for any layeri so that the system is not critical even
in the innermost region. Thus it seems likely that the conser-
vation of theu variable in the toppling rule is essential for
criticality in the two variable model.

V. DISCUSSION AND CONCLUSIONS

In summary, we have studied a generalized two-variable
model as a prototype for self-organized critical behavior in
nonconservative systems. Unlike the OFC model the two-
variable model does appear to be genuinely critical in the
nonconservative regime, at least near the center of the lattice,
and further displays the power-law exponents observed in
real dissipative processes such as earthquakes without any
tuning of the model parameterssin this caseed. Furthermore,
the model predicts universal behavior for all dissipative
choices ofe if sufficiently large systems are considered.

In our presentation we have avoided making a strong con-
nection between the two variables in the model and real
physical systems. This is partly because such justification is
already available in the literature, an excellent and detailed
argument supporting the introduction of thee=0 version of
the model to describe landslide events driven by homoge-

neous tilting being provided inf15g. More importantly we
believe it is the insensitivity of the results to model details
rather than a direct connection with one physical problem
that is the strength of the model. The goal of the subject is to
understand which elements are essential for explaining the
ubiquity of apparently SOC behavior in a range of phenom-
ena with different physical driving mechanisms and charac-
teristics. We fully accept that the two-variable model may
need to be extended or adapted in different ways to provide
any realistic description of a specific phenomenon. However,
the robustness of our results to variations in a range of pa-
rameterssdriving rates, dissipation level, etc.d suggests that
one may realistically obtain similar results in more compli-
cated models. Thus the two-variable model contains all of
the elements necessary to obtain SOC in dissipative systems
and should be viewed as the simplest “toy” model for under-
standing this behavior. On the basis of the study in this paper
two key elements have been identified. First, the failure of
the random-neighbor version of the model indicates that spa-
tial correlation is essential. Second, at least two variables are
required to describe a dissipative system, with our analysis
suggesting that if variables are distributed to neighboring
sites in the toppling process, the redistribution needs to be
conservative for criticality.
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