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Criticality and universality in a generalized earthquake model
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We propose that an appropriate prototype for modeling self-organized criticality in dissipative systems is a
generalized version of the two-variable cellular automata model introduced by Hergarten and Neugebauer
[Phys. Rev. E61, 2382(2000]. We show that the model predicts exponents for the event size distribution
which are consistent with physically observed results for dissipative phenomena such as earthquakes. In
addition we provide evidence that the model is critical based on both scaling analyses and direct observation
of the distribution and behavior of the two variables in the interior of the lattice. We further argue that for
reasonably large lattices the results are universal for all dissipative choices of the model parameters.
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[. INTRODUCTION process proceeds until the next event is triggered. The pa-
L .. rametera measures the level of dissipation in the toppling
For more than a decade the application of self-organizin rocess. Ifa=0.25, the energy is conserved, while far
ceIIqur automatg models to the study'of earthquake and .25 the system is clearly nonconservative. The question
landslide dynamics has g_enerate_:ql C(_)n5|derable (_:ont_rovers(yf whether the OFC model is truly critical in this case has
The concept of seli-organized (_:rltlcahthOQ was f'.rSt """ attracted a great deal of attention in recent years. In the
gggttéi?dofé Eﬁ: I-(I; aggﬁgni?evx:ﬁz(z?fﬁmxvgs[%jﬁlg tge therandom—neighbo(RN) version of the model it has been ana-

P P y the, ftically established that the system is never critical in the

random addition of sand grains and relaxes via a sequence bnconservative regim.6]. In the nearest-neighbdNN)

avalanches. The model evolves to a critical state where char-_ . . . ’ )
. P -version there is an increasing body of numerical evidence
acteristic scales are lost and the avalanche distribution dis-

) again suggesting that the model is only critical in the conser-
plays power law behavior. In the BTW model the number Ofvative limit [7-12]. Furthermore, for values af at or close

grzltr;?nmai?jni? rfa\scct))r:asfr]rvsehdov?/ﬁctehﬁt?Lighioa()slé?s:tzfr? Ig]:/vﬂ}% the conservative limit one finds a density function expo-
y j Rent significantly smaller than that observed in nature, with

Crﬁzlaclofr?trr:s”t“cﬁgtg/olr:etzg g%%egi].earth uakes and landslides. 1.2 for @=0.25 andr=~1.6 for «=0.24. For smaller val-
P q Sgs ofa there is clear numerical evidence that the model is

which experimentally display scale-invariant event dlstnbu-not critical [9,11]; however, one can fit an exponent in the

tions over many decades are dissipative. In both of thes?angere[la 2.1 across several decades of event sizes

cases the probability density for events of "energyts of providing encouragement that the nonconservative OFC

the form P(E)~E .V\./here the exponent is in the range model captures some important features of real dissipative
~1.8-2.1. Unsurprisingly these exponents are not recovere%stemsi12 13

by the conservative BTW model. As a result a variety of In this paper we extend a two-variable lattice cellular au-

dissipative models have been introduced in order to better, ;1o moge| recently introduced by Hergarten and Neuge-
capture the underlying behavior, with the most successf

! ) . auer(HN) [14]. In Sec. Il we define the model and, via a
Ff]mﬁ] ttr;]ee%lég"iggg{’;i?}sgeon;g':g za;t(;]l?;rzkgggg?sl preliminary investigation of event size distributions, argue

. . . . . that the model may well be both critical and have a densit
associated with a continuous-state variable or enefgyni- y y

. . X . . function exponent that is in agreement with physically ob-
tially the energies are assigned random values in the mtervzilJ P g phy y

) . ; erved distributions. Via analysis and simulation we study
[0, 1). The system is then slowly driven in such a way thatthe random-neighbor version of the two-variable model in

Sec. lll, and on the basis of this study we conclusively dem-

\S/:;ﬁs r?;?.Chﬁs the thresholg::l ﬁnd IS term?d ?_UpGI’CI’It:C&lL onstrate that the random-neighbor model is only critical in
en this happens an avalancne occurs at a ime scaié mu limit when the variables are conserved. In contrast, in

quicker than the driving speed. The supercritical site relaxesSeC IV we analyze the nearest-neighbor version of the

with 'fjsf entergy being distributed to four neighbotbeign  model and show that an extensive inner region of the system
according fo is critical for all choices of conservation level. Our main
Uneigh— Uneigh*t @Uj,  Uj — O. (1.2) results and conclusions are summarized in Sec. V.

If any of the neighboring sites become supercritiGag., Il. DEEINITIONS AND PRELIMINARY RESULTS
Uneigh=1) as a result of this process, they also topple accord-

ing to the same rules. The avalanche continues until all node The motivation behind the OFC model is to identify the
values are below the threshold, at which stage the drivingey elements that lead to the apparent ubiquity of SOC in
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nature. In this sense one wants to find the simplest “toy'Open boundary conditions are employed at the edges of the
model which captures this behavior. However, as discusseldttice providing the only form of dissipation in the=1
above the OFC model is not sufficient in this respect andimit.
hence we look for an alternate model which is both critical The HN model discussed above is recovered by choosing
and dissipative. A promising candidate has recently beene=0 [14]; in this limit, no site can ever topple more than
proposed by Hergarten and Neugebaldet,15, initially in once during a single avalanche. Hergarten and Neugebauer
the context of modeling landslides. In the BTW and OFCfound that the nearest-neighbor version of their model pro-
models an avalanche begins when the variable in the modeéluced an event size distribution with slope exponent of ap-
reaches a threshold value, which can essentially be undeproximately 2 consistent with observations. For the general-
stood as being when the local slope or gradient of the surfaceed model we also start by considering the more physically
is sufficiently large. To allow for other elements in their relevant nearest-neighbor model. We have analyzed the prob-
model HN have incorporated two variables andw;; asso-  ability distribution P, (s; ) of events of sizes in a system of
ciated with each site in the lattice. Here we propose a genlinear sizeL (i.e., a lattice of size. X L) for fixed e. For alll
eralization of the HN two-variable model and provide evi- values ofe simulated log-log plots oP, (s; €) versuss reveal
dence that, unlike the OFC model, it is genuinely critical. approximately straight lines, suggesting possible SOC. Fur-
The original HN model is physically motivated by appeal- thermore, the corresponding slope exponents satisfy
ing to the ideas of toppling in avalanches or landslides for=1.90+0.10 for alle<0.9. The precise behavior for 0.9
which one imagines many factors or variables might be rel< e<1 is difficult to elucidate from simulations due to in-
evant[15]. Avalanches are more likely to start where the creasing finite-size effects coupled with increased average
local height differences are large; hence, the dominant factaivalanche sizes yielding a large transient period in the sys-
is probably related to geometry. Physically the correspondingem (see also Sec. IV As a result we can only crudely ap-
toppling process is approximately conservative associategroximate the asymptotic slope exponent resulting 7in
with the movement of particles from one site to its neigh-=1.90+0.20 in this range. Thus for aé<1 we predict a
bors. In addition there are nongeometric factors which alsglope exponent fully consistent with observations in nature.
play a role in determining when and where an avalanche Comparing results for different lattice sizes suggests that
starts. For example, it is known that regardless of surfacéinite-size effects are important and are particularly notice-
geometry the chance of a landslide increases over time due tble for larger choices of. These effects lead to a deviation
a slow weakening of the failure plane, such features changgom linearity in log-log plots ofP,(s;e) for small L. This
nonconservatively during a landslide. In our model based omehavior can be further investigated by using a finite-size
a square lattice we assume the conserved varialibesl  scaling (FSS hypothesis to try and collapse the data for
slopes or magsare represented by;;, while the noncon-  fixed e. The FSS ansatz states that
served elements are containedwrp). The two variables are
initially distributed with random values drawn from a uni- P.(s;e) ~ LPF (s/LP), (2.2
form distribution between 0 and 1. The product of the two
variables determines the likelihood of an avalanche startingvhereF. is an appropriate scaling function agdandD are
at a particular site and is used to measure the local “energyéxponents that describe the scaling of the distribution func-
or stress. If the energy;w;; <1 at all sites, the system is tion. The slope exponent is related to these exponents ac-
stable and we assume that both variables are slowly, bwording to 7=3/D. FSS plots fore=0, 0.2, and 0.8 are
uniformly, driven across the entire latti¢tor simplicity we  shown in Fig. 1a) using 8=3.84 andD =2 corresponding to
assume the variables are driven at the same rate; howevet=1.92 (in this figure the data have been binned for im-
the results that follow are recovered for any choice of drivingproved resolution
rateg. This continues until at some site the energy, which In general there is excellent data collapse for the larger
increases nonlinearly in this model, reaches the thresholgystem sizes considered, with deviations for smallTo
u;jwi;=1 at which point an avalanche is initiated. The supermore carefully examine the behavior of the tails of the prob-
critical site relaxes according to ability distributions it is instructive to plo$"P, (s;€) versus
s/LP which is similar to multiscaling the datl2,13,18.
Our results are shown in Fig.(d). For the two smaller
For the nearest-neighbor version of the model the adjacer@hoices ofe the data collapse is still good even on this ex-
sites on the lattice are the appropriate neighbors. Later waggerated scale. F&=0.8 the finite-size effects are much
also consider a random-neighbor two variable model irstronger, suggesting that if FSS is appropriate, it will only
which for each toppling site the,eiq, are selected at random collapse the data for systems somewhat larger thaB00.
from the lattice. The variablev is not redistributed during Afurther interesting feature of the data is strong evidence
the topple, and the parameterwhich is assumed to be in Of universality for all dissipative choices ef In particular,
the range 8<e<1, measures the level of dissipation.df for fixed L one finds that the distributionB,(s; ) overlay
=1, bothu and w are conserved during the topple; con- one another for a range af values (excluding the cutoff
versely, if e< 1, the toppling rule is dissipative in the vari- region wheres~L2?). More specifically for a particular
ablew. As in the OFC model, if any neighboring sites be- choice of the dissipation parametee=<,< 1, say—one can
come supercriticali.e., u w =1), the avalanche continues find a crossover system sizg(e,) such that forl =L ()
using the same toppling rule until a stable state is reachedhere is a universal distributid® (s; €) for 0< e< €y. Due to

1
Uneigh— Uneigh* zUij,  Uj — 0, Wj; — ewsj.  (2.1)
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FIG. 2. Probability distributions of avalanche sizes in the
random-neighbor two-variable model fer0 (lower curve and e
=0.8 (upper curve For clarity the lower curve has been shifted
down one decade.

FIG. 1. Scaling plots oP|(s; €) for the two-variable model with
€=0, 0.2, and 0.8. Exponen{8=3.84 andD=2 have been used
corresponding to a slope exponentsf1.92. Standard finite-size
scaling has been used {a) where for clarity thee=0.2 and 0.8
curves have been shifted right by two and four decades, respeand system sizes. For smaldlthere is no clear region of
tively. In pane(b) the modified finite-size scaling plots discussed in power-law-type behavior, but asis increased there is more
the main text are shown. In this case #w0.2 and 0.8 curves have evidence for a straight line fit. Finally as—1 there is a
been shifted right by four and eight decades respectively. definite power law with slope exponent- 1.5, identical to

the exponent found for the conservative RN OFC model

the finite-size effects discussed above, one finds that thet7]: In Fig. 2 the probability distributions foe=0 ande
crossover valud(e,) increases ag, increases, with, for - 0-8 aré shown for a range of system sizes300, 600, and

B _ _1200. The results foe=0 are shifted for clarity and in all
gxample,LE(O:Z) ~300 andL.(0.4~600. As a result we be cases the data have been binned in order to see the overlay of
lieve the original HN mode{where e=0) should capture all

) > . the different system sizes. From the results shown in Fig. 2
of the important features of the dissipative systems, whilge see that a power law could not be fitted to the results for
being the most efficient to study via simulation. In the con- _—g put whene=0.8 there is a region where a straight line

servative limit one recovers the=0.25 OFC result with a  qy|q be fitted before the exponential tail, suggesting that for
slope exponentr=1.2. Thus it appears the conservative smga]| e the model is not critical. Furthermore, the plot shows
choicee=1 is in some sense a singular limit of the model. that for a fixede and various_, the probability distributions
For arbitrarily large systems one would observe universabyverlay one another. Hence the model lacks scale invariance
behavior for all dissipative choices efwith distinct behav-  since the largest event size is not growing withand there-
ior in the conservative limit. fore could not be classed as displaying SOC behavior. Simi-
In summary, on the basis of preliminary studies we havear results are found for all choices e 1 studied.
shown that there is good evidence of power-law type behav- To understand the model better we investigate the distri-
ior for all choices of the conservation parameteThe re-  butions of the energy variablesandw. For all e< 1 we find
sulting slope exponent is consistent with observed phenonthat the distribution for the variable covers only a small
ena in the nonconservative cases, and there is some evidenegége with all values closely bunched. Looking at Fig. 3
of finite-size scaling consistent with criticality. In the next where we have plotted the distribution of thevariable for a
two sections we examine the random- and nearest-neighbgelection ofe values, it is clear that asis increased towards

models in more detail to further clarify their behavior. 1 the distributions become more peaked with the locations of
the peaks moving to the right. Wher=1 the peaks are at
1. RANDOM-NEIGHBOR TWO-VARIABLE MODEL u/u,=0, 0.31, 0.62, and 0.93 wherg, is the maximumu

value measured across the system. Comparing this result

In this section we study the random-neighbor version ofwith the RN OFC model wher=0.25, shown as the lowest
the two-variable model, which can be viewed as a mean-fieldurve in Fig. 3, reveals that the distributions are very similar.
approximation to the nearest-neighbor model. This allows uThis suggests that any theoretical results developed for the
to determine the importance of spatial correlations for theconservative RN OFC model may also fit the conservative
model and has the benefit of being easier to analyze. RN two-variable model, indeed we believe that our model

As mentioned above we know one of the features that @&ssentially reduces to the conservative OFC model in the
model must exhibit to be considered as having SOC charadimit e— 1 (albeit with different threshold values at each
teristics is a power law in the probability distribution func- site). Thus we believe the model is critical in this limit.
tion. Hence we start by analyzing log-log plots of the prob-  Further evidence that the random-neighbor model is only
ability distributions of avalanche sizes for varioassalues  critical in the e=1 limit can be found by examining the
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couraging preliminary results in Sec. Il. Our study is based

on extensive simulations of the model for a variety of system
sizesL and conservation parameter levelsin order to en-
able large scale simulations we have employed a linked-list
data structure similar to that introduced by Grassberger for
the OFC mode[7]. The only significant difference compared
to the OFC model is that, due to the nonlinear form of the
update rule for the two variable model, it is not those sites
with uw closest to the thresholdle., the smallest 1uw) but
rather those with the smallegt-(u+w)+/(u-w)2+4]/2

’\ A which will seed the next avalanche. Using this algorithm
reduces CPU time by typically three orders of magnitude

1 compared with a naive implementation of the model rules.

P(u/um)

A In our simulations random initial data in the rari@gl) is
A chosen for bothu andw, and the model is run according to
the rules given in Sec. Il. One expects a transient period
L during which the system organizes towards a stationary state;
it is important to wait until after this transient phase before
collecting data. We find that the usual indicator of transient
k A behavior, the average avalanche size, rapidly converges but
. . . that the distributions of the and w variables continue to
0 02 04 06 08 1 organize over a much longer period. Thus we believe that
u/u monitoring the maximunu value across the lattice gives the
best guide to when the transient phase is passed, with this
FIG. 3. Probability distributions of energy valuesu,, from  value approaching a constant levgl,(L, €) for each choice
simulations withL=600. From top to bottom the curves correspond of L and e. We further find that for a given choice efthe
to €=0, 0.4, 0.8, 0.9, 0.95, and 1. The bottom curve corresponds tapproach to the maximum value follows a simple scaling
the RN OFC model whea=0.25. pattern for most choices df. In particular, ifu*(ng;L,e€) is
the maximum value ofi after ng avalanches, then we find

branching rater. Hence we numerically simulate the model PR Ve
to calculates for variouse and system sizels. The branch- data collapse by plotting™(n; L, e)/L versusns/L” for an

ing rate is defined as the average number of supercriticalPPropriate choice of exponepte). Consequently the num-
descendants generated when each supercritical ancesRff Of avalanches that need to be simulated to reach the
topples[17]. In the simulations we calculatein two slightly ~ Stationary state grows like?. For example the results for
different ways. First we allow each toppling site to topple to€=0 with y=3.74 are shown in Fig. 4.
either two, three, or four neighbors with the appropriate The only exception to this scaling found occurs for suffi-
probabilities for modeling a system having a boundaryciently small system& <L_ say, wherel _ increases from
(edges and cornexsthis is necessary to provide dissipation L. ~50 for e=0 to L.~600 for e=0.95. Fore<0.9 the
in the conservative limig=11 From these results we linearly exponenty varies slowly with y(e) =3.74+¢/10, while y
extrapolate to estimate for an infinite-size system. In the grows more rapidly as— 1. We further find that the limiting
second method we assume that each site has precisely fogilue u,,, (L, €) satisfies
neighbors, naively modeling an infinitely large system. In _
Table | we provide our results for the two different methods. UmadL,€)/L = lim u*(ng,L,e)/L = 0.554/1 —¢ (4.1

For smalle the extrapolated results from the first method Ng—
and the results for the second method are in excellent agregsy 4| ¢. The maximunu value vanishes as— 1 as is to be
ment. Ase increasede>0.9) there is a slight discrepancy; gypected since in this limit ther values at all sites grow
we believe that larger systems are required in order to b@uring the driving phase and remain fixed during the top-

able to more accurately extrapolate because the average a¥kihg phase of the avalanche. Thus one must find that the

lanche size is becoming large, leading to noticeable finiteg,rrespondings values in the stable state decrease towards
size effects. The results confirm that the model is only criti-; o4 a5 the number of avalanches increases.

cal in the conservative case.

IV. NEAREST-NEIGHBOR TWO-VARIABLE MODEL A. Distributions of u and w

For the remainder of this paper we concentrate on the The log-log plots of the probability distributior, (s; €)
nearest-neighbor two-variable model for which we found eNshown in Sec. |l give encouragement that the nearest-

neighbor two-variable model may genuinely display self-

Yin particular we assign two neighbors with probabiliyLl4/and ~ Organized criticality. Further evidence for criticality can be
three neighbors with probability(4—2)/L2 reflecting the number found from explicit examination of the distributions of the
of corner and edge sites, respectively, on a squaré. lattice. In ~ variablesu andw in the interior of the lattice. To begin we
all other cases four neighbors are assigned. examineP(u), the probability distribution for the variable.
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TABLE |. Branching rateo for the RN two-variable model calculated from simulations for a range of
andL values. Columns 2-5 show results and extrapolatibns ) when two, three, or four neighbors are
chosen at randorfsee main tejt Columns 6 and 7 show the corresponding results when four neighbors are
always chosen.

Two, three, or four random neighbors Four random neighbors
€ L=300 L=600 L=1200 L—oo L=300 L=600
0.0 0.5159 0.5169 0.5173 0.5179 0.5178 0.5178
0.2 0.5733 0.5743 0.5749 0.5754 0.5754 0.5754
0.4 0.6443 0.6455 0.646% 0.646% 0.6466 0.6466
0.6 0.7336 0.7349 0.7356 0.7364 0.7363 0.7363
0.8 0.8516 0.8533 0.8539 0.854% 0.8547% 0.854%
0.95 0.9778 0.9793 0.979§ 0.9806 0.980% 0.980%
1.00 0.99975 0.99995% 1.000Q

We have seen above that for each choicé @ind e there is  sense that if we take a snapshot from any stable distribution
a maximum valuel,,,(L, €) that the variables takes. In Fig.  we find the same results. The situation is more complicated
5 we plot the (appropriately normalizeddistribution P,  for the correspondingv distribution P,(w). In this case we
againstu/ Uy (L, €) for L=600 and a range of values. find that the overall shape remains approximately the same
We note that the distributions overlay one another regardfrom one snapshot to another but the distribution does dis-
less of the choice of; an equally convincing overlay is play significant movement. Concentrating on the interior of
found if we also vary the system size. We further observghe system we observe that almost all sites take one of a
that the distribution has significant peaksuaumaxzo,i,%, handful ofw values. The locations of the peaks move for
and?. These become more emphatic if we look at the distri-ater snapshots because is increased during the driving
bution ofu values over an interior sublattice of sikex Nat ~ Phase between avalanchigse explain why this driving is
the center of the full system. The results for a rangdlaire ~ significant for P,(w) but notP,(u) below]. For eache we
shown in Fig. 6. find peaks in the distribution only in the rangesw/w,
From this we can see that the system organizes in such &l wherew,, is the maximum value olv observed in the
way that near the center of the lattice all sites takevalue ~ box over a large number of stable distributions. Watching
which is approximately an integer multiple of,,,/4. Thisis ~ movies of the distributions develop over time reveals that
clearly demonstrated in Fig. 7 which shows a snapshot of theeaks move to the right until they reaeh=w,, when the
u values in the middle 6860 portion of theL=1200, ¢ corresponding sites topple and so the peak is reassigned to
=0.2 system. w=ew,, This suggests that all sites in the box with a match-
We discuss these findings further at the end of this subing w value topple as part of a single avalanche. In Fig. 8 we
section once we have established the corresponding distribghow a snapshot of the values in the middle 308 300
tion of thew variable. portion of theL=1200,e=0.2 system.
We saw in Fig. 5 that thd,(u) distribution was essen- This shows that large connected patches of the system
tially the same for any choice df and e. Connected to this take the sameav value. Within patches there are sometimes

is the observation that the distribution is stationary in thesmaller patches of sites which all take another single
value. Each patch corresponds to a peakPjjiw) with a

.oy MHIIOE O SR 7 AR 4
2 * =0
3.54 o g=0.2
r 1 A e=04
= " 3¢ o e=0.6
o g ! * x ¢=0.8
& 3 25 . * £=0.9
- O’ 1 ;
Lo % L=150 N } : »7*:
< oz v L=200 & : e
S 0 o L=300 1.5 f, : :
A L=400 1 § : ' 4
0.1 * L=600 1h : P
O L=800 1 A '
X L=1200 oshs ™ '
0 005 0.1 015 . .02 025 N A
N /L % 0.2 0.4 06 0.8 ;
u/urnax
FIG. 4. Scaling plot of the growth of the maximum value
across the latticéu®) as the number of avalanchés) grows. The FIG. 5. The scaled probability distribution of the variable
results shown are for the case0 and a variety of lattice sizes as across the lattice with =600 and a range of values as indicated.
indicated. The dotted line shows the complete set of data forehé case.
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P, (u)
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0.4 06 0.8 1

LA A .
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FIG. 8. A snapshot of the values in the center 300300 box
for the case of aih.=1200, e=0.2 system. The valugbetween 0
andw,,) are shaded as shown in the color bar, aaddj represent
the coordinates of the sites in the lattice.

FIG. 6. The probability distribution of the variable across
interior NX N lattices with (from top to bottompy N=4L/5, 3L/5,
2L/5, L/5, andL/10.

height proportional to the size of the patch. The results de:
scribed above indicate that when one site in a patch topple
nearly all other sites in the patch topple in the same av

atch after the avalanche has occurred. We show below that
' simple periodically repeating pattern of avalanches is pre-
&ented, however, by the outer layers which do not fit with

lanche. ;
- this scheme.
Combining our results foP,(u) andP,(w) near the cen-
ter of the lattice leads to a simple picture for the dynamics of B. Quantitative formalism for criticality

the two-variable model. If we consider a box of si¢e N at

) 4 ; The large patches of constamtvalues near the center of
the center of the lattice, one finds patches of fixedalues

! ; our lattices observed in Sec. IV A are somewhat reminiscent
of scales up to the box size amdvalues approximately at ot the distributions of spins in an Ising or multistate Potts
integer multiples Ofty,,/ 4. The system is driven untw g qel at the critical temperature. In this subsection we aim
=1 at some site when an avalanche starts. According 10 Eqq, capitalize on this similarity in order to develop another
(4.1) Umayis large for large. and hence there is no noticeable ¢,malism for identifying criticality. We require several fea-
change inP,(u) during the driving phase whereas there is ayes for critical behavior: First, the dimension of the largest
visible change irP,(w) because the maximum value in @ parch of fixedw (which we may identify as a “correlation
box near the center of the latticey,, is small withwy, |ength”) should diverge in the infinite size limit. Second, we
~1/umay Within the patch of the seed site all sites topple inpeed to confirm that when an avalanche starts in a patch, all
the avalanche in an analogous manner to a large avalanchedfes in that patch topple in the same avalanGhehe limit

the BTW Sandp”e model. It is pOSSib|e that neighboringof L—>°O) Fina”y, we require patches on all scales up to the
patches also topple within the avalanche if there had previgttice size. We examine these requirements below leading to
ously been no site withi= Una, even thoughwun,=1 for  an improved understanding of the system dynamics and fur-
the w value in that patch. Since alt values in a patch are ther evidence that the model is genuinely critical.
reassigned in the same avalanche, they remain as a single |njtially we devise a quantity to measure the likelihood
that all sites within a particulaw patch topple in the same
avalanche. We know that the distribution of variables is more
organized near the center of the lattice, so we choose a mea-
sure which can be defined layer by lay@vhere layer 1
contains all sites on the boundary of the lattice and layer
contains the innermost four sijed\t the start of each ava-
lanche we measure thvevalue of the seed siteys. Then for
each layeii we count the number of sites with=wg which
receive a contribution from a toppling neighbor during the
avalanche-A*, say (a site is only counted once in any
single avalanche We further counn®?, the number of sites

in layeri that topple and hasv=ws, specifically excluding

i the seed site. We repeat this process over many avalanches
and define thdayer patch branching rateia

FIG. 7. A snapshot of tha values in the center 6060 box for
the case of aln.=1200, e=0.2 system. Heré and j represent the pg) => ni“’p/z nee, (4.2
coordinates of the sites in the lattice. All sites in this sublattice take
a value ofu/un,=0, 0.25, 0.50, 0.75+0.0023 and are shaded asvhere the sums are taken over all avalanches. Our results for
shown in the color bar. In this snapshot there is no site with the most dissipative choice=0 and a range of system sizes
~ Umax. are shown in Fig. 9.
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FIG. 9. The layer patch branching rai ;) plotted against S il il
i/(L/2) for e=0 and a variety of system sizes. The inset shows the FIG. 10. The distributionga) P "(s;e) and (b) D "(4s;e€)
same data plotted againsti¥ér layers near the center of the lattice. described in the text foe=0, L=1200, and a range of lattice coor-
dinates(i,j). From top to bottom the curves represent =100

(shifted upwards by ten decade$=j=200 (shifted upwards by
For an extensive region in the center of the lattice we fingFight decadss..., i=j=500(shifted upwards by two decadeand
thatpg) approaches 1 as the system size increases, supportih@J N
the conjecture that all sites in a givenpatch topple in the patches may also merge into onhdo demonstrate this we
same avalanche. Plottir@;) against 1¥ more clearly dem- have examined the event size distributid?ik”(s; €) which
onstrates the approach to 1 for layers sufficiently far from theonly count events that include the specific <itg). In Fig.
boundary, as shown in the inset of Fig. 9. 10(a) we show the results for six sites spread across the
We further need to establish that the sizewofpatches lattice for the case=0, L=1200.
grows withL in order to claim criticality. A simple measure ~ In all cases we find approximate power-law behavior with
of this is to determine the average size of the largest patct!0 P&aks characteristic of periodicityote that because only
which we find does grow proportionally with. It is also events involving a specific site are included much less data

useful to develop a layer quantity which can be coupled withe € avallable leading to naisier platsThe maximum event

) Eor each laver we calculate the average largest unbrokeSIZ(-a putoﬁ is larger for sites nearer the center of the Igtnce, as
Py - Y . ge farg Ahticipated from the event size inhomogeneity described ear-
sequence of sites with the same value, divided by the

lier. We have also recorded the difference in s{2e) of
number of sites in the layer. The resulting indicatat-  successive events involving sitg,j), collecting the results
say—approaches 1 if all sites in the layer are always part ofto another distribution functiob!"(As; e). If the size and
a single patch and tends to[#(L-2i+1)] if thew valuesin  |pcation of events typically change slowly over time, we
the layer are randomly distribute_d. Concentrating t0  \yould expectDE’”(As;e) to be localized aroundis=0:
and a range of values reveals that’ — 0 in the outer few however, as shown in Fig. i) the distribution is again
layers (for 0<i=<L/20) but converges to a finite nonzero approximately power law over several decades. These results
value for all other layers. Combining the results ng.) and are all consistent with the idea that the model is genuinely
d suggests that the two-variable model is critical. With theCritical and a re'asonablg prototype for understanding the el-
exception of the outermost layers the sizevgfatches grows ements underlym_g phyglcal phenomena such as earthquakes.
. - . One does sometimes find sequences of large avalanches for
with L and within patches the sites generally all topple to-

ther. Thi Its i inh A .ﬂiuccessive events including a specific site, which is unphysi-
gether. This results in a very Inhomogeneous system, Wiltlly, - owever, one must accept that simplifications in the

the largest events typically occurring near the center of th‘?nodel, such as having the same driving rates avalues for
lattice. The distribution of patch sizes over a large number OEvery site, are also unphysical. The two-variable model is

av_a_lanc_hes_ es_sentially co_rresponds_ to the avalanche proRsp st to variations ire and the system driving rate which
ability distribution P, (s; €) discussed in Sec. II. provides encouragement that further, more realistic, modifi-

From the description above one is led to question whethegations will still result in a critical system with appropriate
the two-variable model leads to periodic behavior near thexponents.

center of the lattice. Such behavior would raise doubts over Finally in this section it is interesting to note that one can
the criticality of the model and more importantly greatly repeat the analysis discussed above for more general defini-
limit its applicability to natural phenomena. Simulations sug-tions of a two-variable model; for example, one could re-
gest that the disorder caused by the outer layers preventspace the toppling rule fou in Eq. (2.1) by

simple periodically repeating sequence of avalanches. More

specifically the spatial inhomogeneity caused by the open 2, contrast, when periodic boundary conditions are employed the

boundary conditions stops a periodic state developing; thuswo-variable model enters a stable periodic state attributable to syn-
one finds large patches break into smaller ones while distinathronization.
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Uneigh— Uneigh™ Uij (4.3)  neous tilting being provided if15]. More importantly we _

e ) believe it is the insensitivity of the results to model details
where 0<a<0.25. Preliminary studies fae<0.25 suggest rather than a direct connection with one physical problem
that the system still organizes in such a way that larggpat is the strength of the model. The goal of the subject is to
patches of constaw values are formed near the center of yngerstand which elements are essential for explaining the
the lattice(so thatd®e') >0 throughout the interior of the ubiquity of apparently SOC behavior in a range of phenom-
system as aboyeHowever, one findp!®*" does not ap- ena with different physical driving mechanisms and charac-
proach 1 for any layeirso that the system is not critical even teristics. We fully accept that the two-variable model may
in the innermost region. Thus it seems likely that the conserneed to be extended or adapted in different ways to provide
vation of theu variable in the toppling rule is essential for any realistic description of a specific phenomenon. However,

criticality in the two variable model. the robustness of our results to variations in a range of pa-
rameters(driving rates, dissipation level, efcsuggests that
V. DISCUSSION AND CONCLUSIONS one may realistically obtain similar results in more compli-

i ) _cated models. Thus the two-variable model contains all of
In summary, we have studied a generalized two-variablgne elements necessary to obtain SOC in dissipative systems
model as a prototype for self-organized critical behavior ingnq should be viewed as the simplest “toy” model for under-
nonconservative systems. Unlike the OFC model the twostanding this behavior. On the basis of the study in this paper
variable model does appear to be genuinely critical in thgyg key elements have been identified. First, the failure of
nonconservative regime, at least near the center of the latticg,g random-neighbor version of the model indicates that spa-
and further displays the power-law exponents observed ifjg| correlation is essential. Second, at least two variables are
real dissipative processes such as earthquakes without afyquired to describe a dissipative system, with our analysis
tuning of the model parametefis this casee). Furthermore,  gyggesting that if variables are distributed to neighboring

the model predicts universal behavior for all dissipativegjtes in the toppling process, the redistribution needs to be
choices ofe if sufficiently large systems are considered. conservative for criticality.

In our presentation we have avoided making a strong con-
nection between the two variables in the model and real

physical systems. This is partly because such justification is ACKNOWLEDGMENT
already available in the literature, an excellent and detailed
argument supporting the introduction of the0 version of This research was supported in part by The Royal Society,

the model to describe landslide events driven by homogeU.K.
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